
Version 0.2

TomTom Watch Interface

Version 0.2

TOMTOM WATCH INTERFACE

INTRODUCTION

The TomTom Watch family (Multisport, Spark, Runner, Adventurer) are GPS watches with a multitude of
fitness tracking functions. TomTom still adds new functions, though (07-2017) it appears that TomTom will
move out of wearables. The watches are used in combination with the TomTom Mysports cloud account. A
local application on PC or Mobile/Tablet is used to communicate to the watch and sync between the watch
and the cloud.

In order to create a PC application I continued reverse engineering the watch. The start of this was formed by
the excellent application ttwatch of Ryan Binns. It has been applied in the TomTomWatch Application
(http://blog.studioblueplanet.net/?page_id=566).

‘not checked’ indicates I copied the information from the Ryan Binns application, but did not check myself.

INTERFACE

The watch has two physical interfaces:

 Bluetooth
 USB

This document is limited to the USB interface. Using this interface a client can issue commands to the watch
and read, write and delete files. First the file system and formats are described, then the USB interface.

FILE SYSTEM

OVERVIEW

The watch interface functions are based on a file system that is accessible via Bluetooth and the USB interface.
Note that another file system is present that is accessible via the PC via USB as regular removable storage and
used for transfer of music. This file system is mapped on the PC file system (like an USB stick) when the watch
is connected.

This section describes the former filesystem. Files are addressed by an 32 bit integer ID. In this document the
file IDs are given in an 8 character hexadecimal, like 0x00910000.

Version 0.2

Following files have been identified:

File ID Description

0x00000012 Bluetooth Low Energy (BLE) firmware. Used for firmware upgrades. (NOT CHECKED)

0x000000F0 System firmware. Used for firmware upgrades

0x00010100 GPS Quickfix data, used for obtaining a quick GPS lock. Is written each time the watch is
connected to TomTom MySports. For the adventurer, the file is downloaded from
https://gpsquickfix.services.tomtom.com/fitness/sifgps.f2p3enc.ee

0x00010200 GPS Firmware. not checked

0x00010301 Some version numbers??

0x00013000 Stacktrace. Text file

0x00013001 BLE firmware Update log not checked

0x00013002 Sysem firmware Update log. Text file

0x00013100 System log. Text file

0x0071xxnn Races. xx defines the activity. nn is the race number. Proprietary format.

0x0072nnnn Race history. not checked

0x0073xxnn History data. For each activity type (xx) for the last 10 activities (0xnn) such a file is
generated

0x0081nnnn Language files

0x008300xx Activity summary. Each file contains the last 10 activities. This file is used by the watch to
show the last 10 activities for each activity type xx.

0x0085000n Manifest files. Contain the settings. 0x00850000 is the current list of settings. 0x00850001
and 0x00850002 are backups

0x00880000 Textual representation of the playlists (music watches only)

0x0091nnnn Activity files. Correspond with the ttbin files. Proprietary file format containing records.

0x00B100nn Tracked activity (steps, calories, heart rate, sleep, fitness points, etc) for upload to TomTom
MySports. Up to 20 files are generated. A new file is generated each time the watch is
connected to the PC and disconnected. The files are uploaded and deleted when the watch
is connected to TomTom MySports. Protobuf format

0x00B20000 Tracked activity, temporary file which is used during the time the watch is connected to the
PC. When disconnected, this file is ‘renamed’ to the next 0x00B100nn file (if there are 20
0x00B100nn files, tracked activity keeps being logged to this file; rename after the the
0x00B100nn files have been deleted; CHECK!). Same protobuf format as 0x00B100nn

0x00B20001 Unclear. 4 bytes.

0x00B3000n Tracked activity of the last 7 days. n=8-f. Same protobuf format as 0x00b100nn, however
heartrates are not stored.

0x00B8000n Routes (track planning). Each file contains a route. Protobuf format. The watch accepts 15
route files, hence 0x0≤n≤0xE

0x00B9nnnn

0x00BEnnnn The personalized workouts, added since firmware version 1.7.53 (Adventurer). Protobuf
format.

0x00F20000 Preferences file. XML format. Contains the watch name and other preferences for
connecting to TomTom MySports

Version 0.2

PREFERENCES FILE, 0X00F20000

The preferences file is an XML file containing the preferences used when connecting to TomTom MySports.
After factory reset the watch does not have such a preference file. When connecting the watch to the
‘TomTom Sports Connect’ it is created as part of the registration process. A.o. a token and secret are
generated and coupled to a TomTom Mysports cloud account. When connecting the Watch to
‘TomTomWatch’ a default preference file is written without token and secret (file will be overwritten by
‘TomTom Sports Connect’).

Apart from the token and secret it contains the watch name, configuration service URL and some additional
configuration. The file is also copied on a Windows PC to:

c:\users\<user>\TomTom Sports\<device serial>\preferences.dat

Changing the watch name can be done by changing the name between the <watchName></watchName>
tags.

<?xml version="1.0" encoding="UTF-8"?>
<preferences version="1" modified="Sun Oct 29 17:12:36 2017">
 <ephemerisModified>0</ephemerisModified>
 <watchName>GPS Watch Jorgen</watchName>
 <ConfigURL>https://mysports.tomtom.com/service/config/config.json</ConfigURL>
 <exporters>
 <online>
 <export id="MySports" autoOpen="1"/>
 <MySportsAuthToken>...</MySportsAuthToken>
 <MySportsTokenSecret>...</MySportsTokenSecret>
 </online>
 </exporters>
</preferences>

Version 0.2

FIRMWARE FILES (0X000000F0, 0X00000012, 0X00010200)

Firmware update steps are:

1. Fetch the configuration service as defined in the preferences file, <ConfigURL> tags.
E.g.
<ConfigURL>https://mysports.tomtom.com/service/config/config.json</ConfigURL>

2. Get the “service:firmware” url from the resulting JSON:
E.g.
https://sports.tomtom-
static.com/downloads/firmware/{PRODUCT_ID}/FirmwareVersionConfigV2.xml

3. Fill in the {PRODUCT_ID} as resulted from the product ID USB function.
E.g. for the adventrurer:
https://sports.tomtom-
static.com/downloads/firmware/E0070000/FirmwareVersionConfigV2.xml

4. Retrieve the xml file. This xml file defines the latest firmware and corresponding firmware files

5. Download the firmware files from the same location
E.g.
https://sports.tomtom-static.com/downloads/firmware/E0070000/1_7_53/0x000000F0

6. Upload the firmware files to the watch

7. Execute an USB reboot command to the watch.

Note:

 Firmware upgrades usually lead to an extension of the number of settings as stored in the manifest
files (0x0085000n).

 I downgraded the firmware, by applying 1.3.255 0x000000F0 file to my watch running 1.6.26. This
succeeded, however it resulted in a full reset and a required a reconfiguration. Not clear if
downgrading is generally supported.

<FirmwareVersion>
 <latestVersion>
 <Major>1</Major>
 <Minor>7</Minor>
 <Build>53</Build>
 </latestVersion>
 <isCritical>yes</isCritical>
 <URL>1_7_53/0x000000F0</URL>
</FirmwareVersion>

Version 0.2

GPS QUICKFIX FILE (0X00010100)

Procedure for uploading quickfix data:

1. Fetch the configuration service as defined in the preferences file, <ConfigURL> tags.
E.g.
<ConfigURL>https://mysports.tomtom.com/service/config/config.json</ConfigURL>

2. Get the “service:ephemeris” url from the resulting JSON:
E.g.
https://gpsquickfix.services.tomtom.com/fitness/sifgps.f2p{DAYS}enc.ee

3. Replace the {DAYS} by the number of days ahead. 3 and 7 seem the only possible values…
E.g.
https://gpsquickfix.services.tomtom.com/fitness/sifgps.f2p3enc.ee

4. Download the file.

5. Upload the file to the watch using file ID 0x00010100.

MANIFEST FILES (0X0085000N)

These files contain the watch settings as key-value pairs. The number of settings is defined by the Length field.
The list is settings is extended usually at software updates.

Field Description Bytes Format

File type 0x0085 2 Integer

Length Number of tag-value pairs 2 Integer

Array:

 Tag Tag. Seems to be an increasing number from 0 to (Length-1) 2 Integer

 Value Value 4 Integer

Version 0.2

ACTIVITY FILES (0X0091NNNN)

HANDLING

When using the TomTom Sports Connect application, the 0x0091NNNN files are downloaded and stored on
disk. Under windows the path is:

c:\users\<user>\TomTom Sports\<watch name>\<YYYY-MM-DD>\<sport>_<hh-mm-ss>.ttbin

 For example:

c:\users\<user>\TomTom Sports\GPS Watch Jorgen\2017-01-01\Freestyle_20-35-58.ttbin

When using the Android app the files are stored on the file store:

/TomTom_MySports/<serial>/workouts/uploaded/<fileId>_<YYYYMMDD>_<hhmmss>.ttbin

For example:

/TomTom_MySports/HL1456G01770/workouts/uploaded/00910000_20170101_203558.ttbin

(Writing a ttbin file to /TomTom_MySports/<serial>/workouts/ and starting the TomTom App
makes the App upload the ttbin file to the TomTom MySports cloud.

FILE FORMAT

Activity files contain the logged activities. After deleting all 0x0091nnnn files, the next activity is logged with
nnnn=0, subsequent files are logged by increasing nnnn by 1.

Format:

Record 0 – Header

Record 1

Record 2

…

Record N

The ttbin file consist of a series of record. Each record starts with a tag followed by a number of values. The tag
identifies the record type and defines the values to follow. A value can consist of 1 or more bytes encoding an
integer or float value.

Tag Value 1 Value 2 Value 3 … … Value M

All integers are little endian (LSB first)

The first record in the file is the header record (tag=0x20). This is a special record a.o. defining the records in
the file.

Version 0.2

HEADER RECORD

It is the first record in the ttbin file. The header defines the ttbin file. Amongst others it defined the record
types that occur in the file with their lengths.

Length: 117 (version<=0x09) or 120 bytes (version>=0x0a), excluding the array with tags and lengths.

Field Description Bytes Format

Tag 0x20 1 integer

version Version of the ttbin file format. Versions of 0x07, 0x09
and 0x0A have been checked.

1 integer

firmware version Versions of watch firmware, consisting of major,
medium, minor, like 1.3.255.

In ttbin “version” <=0x09 for each part 1 byte is
reserved, “version” >=0x0A two bytes, little endian.

Version
<=0x09: 3

>=0x0A: 6

integer

 product ID ID of the product. For Adventurer: 0xE0070000, Runner
3 Music 0xD1070000

2 integer

 Start time Start time of the activity, as epoch seconds, e.g.
0x5A0EF328 which corresponds to GMT: Friday,
November 17, 2017 14:33:12

4 integer

 Software version On the Adventurer: all 0x00 16 byte
array

 GPS firmware version On the Adventurer: all 0x00 80 byte
array

 Watch time Watch time as epoch seconds. On the adventurer the
same as “Start time”

4 integer

 Local time offset Time offset between local time and GMT. For
Amsterdam this is 3600 seconds in winter, 7200 seconds
in summer.

4 integer

 Reserved

1

 Length records The next section of the header defines the record tags
that appear in the file, with the corresponding
record length. This field defines the number of tag-
length pairs in the array.

1 integer

 Array:

 Tag Record tag, defining the type of record 1 integer

 Length Length of the record in bytes. For a number of records
(e.g. 0x4B) a length of 0xFFFF is defined,
meaning variable length. In that case the length is
defined in the record itself.

2 integer

Version 0.2

STATUS RECORD

The record indicates status changes. READY -> ACTIVE <-> PAUSED -> STOPPED. READY is the state when the
activity is chosen. ACTIVE is when ‘get going’ is selected. PAUSED when the activity is PAUSED by pressing the
left button on the watch. STOPPED is when the left button is pressed another time and the activity is finished.

Length: 7 bytes

Field Description Bytes Format

Tag 0x21 1 Integer

Status New status: READY – 0, ACTIVE – 1, PAUSED – 2, STOPPED –
3

1 Integer

Activity Activity code 1 Integer

Timestamp GMT Timestamp in epoch seconds 4 Integer

GPS RECORD

This record is added each second when the watch is in the ACTIVE state.

Length: 28 bytes

Field Description Bytes Format

Tag 0x22 1 Integer

Latitude Latitude * 1E7 degrees, -180E7 – 180E7 degrees 4 Integer

Longitude Longitude * 1E7 degrees, -180E7 – 180E7 4 Integer

Heading Heading * 1E2 degrees, 0-360E2 2 Integer

Speed Speed in 1E2 m/s 2 Integer

Timestamp GMT Timestamp in epoch seconds 4 Integer

Calories Cumulative calories burned (cal) 2 Integer

Filtered speed Some filtered speed value in m/s 4 Float

Distance Cumulative distance in m 4 Float

Cycles The cycles per second. For running 2-3. 1 Integer

Version 0.2

EXTENDED GPS RECORD

Additional information regarding the GPS tracking.

Length: 20 (version<=0x09) or 24 bytes (version>=0x0a).

Field Description Bytes Format

Tag 0x23 1 Integer

EVPE Estimated Vertical Precision Error in cm 2 Integer

EHPE Estimated Horizonal Precision Error in cm 2 Integer

HDOP Horizontal Dilution of Precision 1 Integer

Unknown 4 Int Array

Unknown 4 Int Array

Unknown 4 Int Array

Unknown 1 Integer

Unknown 1 Integer

TBD 4

HEART RATE RECORD

This record is added each second when the watch is in the ACTIVE state and the HR sensor is active or an
external HR sensor is connected.

Length: 6 bytes

Field Description Bytes Format

Tag 0x25 1 Integer

Unknown 0xFF for external HR sensor, other value for internal sensor 1 Integer

Timestamp Timestamp in epoch seconds. Oddly enough, this is local
time, whereas the rest of the timestamps in is GMT.

4 Integer

Version 0.2

SUMMARY RECORD

Summary of the activity. Logged when the activity is STOPPED.

Length: 14 (version<=0x09) or 18 bytes (version>=0x0a).

Field Description Bytes Format

Tag 0x27 1 Integer

Activity Activity code 1 Integer

Distance Distance 4 Integer

Duration Duration of the activity in seconds. Excluding pause. 4 Integer

Calories Calories burned during the activity 2 Integer

Unknown ? 0x004A=74 – Starting heartrate?? 2 Integer

Duration2 Seems to be the duration. When paused slightly longer (2-3
sec) than Duration…

4 Integer

POOL SIZE RECORD

Pool size. Used in Swimming activity.

Length: 5 bytes

Field Description Bytes Format

Tag 0x2A 1 Integer

Pool size Pool size in cm 4 Integer

WHEEL SIZE RECORD

Wheel size. Used in cycling.

Length: 5 bytes

Field Description Bytes Format

Tag 0x2B 1 Integer

Wheel size Wheel circumference in mm, as defined under Cycling. 4 Integer

Version 0.2

TRAINING SETUP RECORD

Defines the training. Not used if no training set.

Length: 10 bytes

Field Description Bytes Format

Tag 0x2D 1 Integer

Goal Training goal

0 = goal distance, 1 = goal time, 2 = goal calories, 3 = zones
pace, 4 = zones heart, 5 = zones cadence, 6 = race, 7 = laps
time, 8 = laps distance, 9 = laps

1 Integer

Minimum Minimum value: metres, seconds, calories, sec/km, km/h,
bpm sec/km, km/h, bpm (only used for zones).

4 Float

Maximum Maximum value. Used in combination with the miminum,
e.g. to indicate a heartrate zone min and max value. If only
one limit is needed, only minimum is used and Maximum is
set to 0x00000000.

4 Float

LAP RECORD

Lap not checked

Length 11 bytes

Field Description Bytes Format

Tag 0x2F 1 Integer

Time Total time in seconds 4 Integer

Distance Total distance in meters 4 Float

Calories Total calories (cal) 2 Integer

0X30 RECORD

Occurs after the activity is selected.

Length 3 bytes

Field Description Bytes Format

Tag 0x30 1 Integer

? Values: 0x01-0x0f?

? Value: 0x00

Version 0.2

CYCLING CADENCE RECORD

Revolutions and time counters. Can be used to calculate the cadence. not checked

Length 11 bytes

Field Description Bytes Format

Tag 0x31 1 Integer

Wheel revolutions Counts the wheel revolutions 4 Integer

Wheel revolutions time Counts the time in ms 2 Integer

Crank revolutions Counts the crank revolutions 2 Integer

Crank revolutions time Counts the time in ms 2 Integer

TREADMILL RECORD

Treadmill. not checked

Length: 17 bytes

Field Description Bytes Format

Tag 0x32 1 Integer

Timestamp Timestamp in epoch seconds, UTC 4 Integer

Distance Total distance in m 4 Float

Calories Calories burned 2 Integer

Steps Number of steps since ?? 4 Integer

Step length Step length in cm 2 Integer

SWIM RECORD

Treadmill. not checked

Length: 21 bytes

Field Description Bytes Format

Tag 0x34 1 Integer

Timestamp Timestamp in epoch seconds, UTC 4 Integer

Distance Total distance in m 4 Float

Frequency 1 Integer

Stroke type 1 Integer

Strokes Strokes since the last record 4 Integer

Completed laps 4 Integer

Calories 2 Integer

Version 0.2

0X37 RECORD

Occurs a few seconds after the watch is set to active (activity is started). not checked

Length: 2 bytes

Field Description Bytes Format

Tag 0x37 1 Integer

? Counter or status value?? Value: 1. No lap counter, no
intervals counter.

1

INTERVAL SETUP RECORD

Interval training setup as defined on the watch. not checked

Length: 22 bytes

Field Description Bytes Format

Tag 0x39 1 Integer

Warm type 0 – Distance, 1 - Time 1 Integer

Warm Warm up in meters or seconds 4 Integer

Work type 0 – Distance, 1 – Time 1 Integer

Work Work in meters or seconds 4 Integer

Rest type 0 – Distance, 1 – Time 1 Integer

Rest Rest in meters or seconds 4 Integer

Cool type 0 – Distance, 1 – Time 1 Integer

Cool Cool down in meters or seconds 4 Integer

Sets Number of sets 1 Integer

INTERVAL START RECORD

Start of the interval. not checked

Length: 2 bytes (version ≤ 0x09), 3 bytes (version ≥ 0x0a)

Field Description Bytes Format

Tag 0x3A 1 Integer

Type 1 - warm up, 2 - work, 3 - rest, 4 - cool down, 5 - finished 1 Integer

Version 0.2

INTERVAL FINISH RECORD

Interval finish report. not checked

Length: 12 bytes (version ≤ 0x09), 14 bytes (version ≥ 0x0A)

Field Description Bytes Format

Tag 0x3B 1 Integer

Type 1 - warm up, 2 - work, 3 - rest, 4 - cool down, 5 - finished 1 Integer

Time Duration of the interval in seconds 4 Float

Distance Distance covered during the interval in m 4 Integer

Calories Calories burned 2 Integer

?

RACE SETUP RECORD

Race definition file. not checked

Length: 41 bytes

Field Description Bytes Format

Tag 0x3C 1 Integer

Race ID Only used for web services race, otherwise 0 16 Byte array

Distance Distance in m 4 Float

Duration Duration in seconds 4 Integer

Name Null terminated character string 16 Char array

RACE RESULT RECORD

Race results. not checked

Length: 11 bytes

Field Description Bytes Format

Tag 0x3D 1 Integer

Distance Distance in m 4 Float

Duration Duration in seconds 4 Integer

Calories Calories burned 2 Integer

Version 0.2

ALTITUDE UPDATE RECORD

Altitude record. Since version ≥ 0x0A no longer present on the Adventurer. It has been replaced by the
elevation record (tag=0x47) not checked

Length: 8 bytes

Field Description Bytes Format

Tag 0x3E 1 Integer

Rel. Altitude Relative altitude since start of the workout 2 Integer

Climb Total climb 4 Float

Qualifier Not defined yet 1

HEART RATE RECOVERY RECORD

This record presents the heart rate recovery. The recovery is measured when the watch is set to pause. During
1 minute the decrease in heart rate is recorded.

Length: 9 bytes

Field Description Bytes Format

Tag 0x3F 1 Integer

Score Score: 0 – no recovery, 1 – poor recovery, 2 – fair recovery,
3 – good recovery, 4 – excellent recovery (≥40 bpm)

4 Integer

Recovery Heart rate recovery in BPM per minute. A positive value
means decrease, a negative value means an increase after
the minute (no recovery).

4 Integer

INDOOR CYCLING RECORD

Indoor cycling not checked

Length: 12 bytes

Field Description Bytes Format

Tag 0x40 1 Integer

Timestamp Timestamp in epoch seconds, UTC 4 Integer

Distance Distance in m 4 Integer

Calories Calories burned 2 Integer

Cadence Cadence 1? Integer

Version 0.2

GYM RECORD

Gym record not checked

Length: 11 bytes

Field Description Bytes Format

Tag 0x41 1 Integer

Timestamp Timestamp in epoch seconds, UTC 4 Integer

Calories Calories burned 2 Integer

Cycles Total number of cycles 4 Integer

MOVEMENT RECORD

Some status regarding movement TBD

Length: 2 bytes

Field Description Bytes Format

Tag 0x42 1 Integer

Movement status Not clear: 0 - standing still, 1 – moving slower, 2 –
moving, 3 – moving??

ROUTE DESCRIPTION RECORD

Description of the planned route.

Length: 101 bytes

Field Description Bytes Format

Tag 0x43 1 Integer

?? 0x00? 16

?? 4

Route name Null terminated string 80 Char array

Version 0.2

ELEVATION RECORD (ADVENTURER)

Contains barometric elevation information

Length: 12 bytes

Field Description Bytes Format

Tag 0x47 1 Integer

Unknown Some status. Bit values. 1 Integer

Elevation 1 Absolute altitude, probably GPS altitude, in m 2 Integer

Elevation 2 Relative altitude, starting at 0, in m 2 Integer

Ascend Total cumulative ascend in m 2 Integer

Descend Total cumulative descend in m 2 Integer

Unknown Seems to be a measure for the height increase (dz/dt) 2 Integer

Version 0.2

BATTERY RECORD

Battery record. Occurs at 30 s (occasionally at 60 s) intervals.

Figure 1 Typical battery level values (recorded during 1h20' run on Adventurer)

Length 5 bytes

Field Description Bytes Format

Tag 0x49 1 Integer

Level Battery level in % (0-100). Tends to decreasing during the
exercise as one might expect, though subsequent values
might fluctuate (down and up).

1 Integer

Unknown1 Typical value 127 1 Integer

Unknown2 Typical values 4, 5, 6 1 Integer

Unknown3 Typical value 0 1 Integer

0

10

20

30

40

50

60

70

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93 97 10
1

10
5

10
9

11
3

11
7

12
1

12
5

12
9

Le
ve

l i
n

%

Record

Battery Level

Version 0.2

FITNESSPOINTS RECORD

Contains the TomTom fitness points. Fitness points are an evaluation of the workout that depends on the
heart rate.

Length 9 bytes

Field Description Bytes Format

Tag 0x4A 1 Integer

Timestamp Timestamp in epoch seconds 4 Integer

Fitnesspoints 1 Cumulative fitness points 2 Integer

Fitnesspoints 2 Appears to be same value as Fitnesspoints 1 2 Integer

WORKOUT RECORD 1

Has something to do with the workout.

Length: variable (0xFF)

Field Description Bytes Format

Tag 0x4B 1 Integer

Length Length of the remainder of the record in bytes 2 Integer

??

??

WORKOUT RECORD 2

Has something to do with the workout. Contains the messages. The record does not seem to be mentioned in
the header (tag=0x20)

Length: variable (0xFF)

Field Description Bytes Format

Tag 0x4C 1 Integer

Length Length of the remainder of the record in bytes 2 Integer

??

??

Version 0.2

ACTIVITY TRACKING FILES (0X00B1NNNN, 0X00B2NNNN, 0X00B3NNNN)

Daily activity is tracked in the activity tracking files. The format is protobuf format. Next protobuf definition
shows the content of the files.

syntax = "proto2";

package tutorial;
//###
//
// Definition file for the TomTom activity tracking files (files with ID 0x00b1nnnn).
//
//###

<Language specific statements>

//###
// 1st level: root container
//###

message RootContainer
{
 optional Metadata metadata =7;
 optional DataContainer dataContainer =8;
}

//###
// 2nd level: metadata. Containing just two ints having the same value. Occurs often in one file
//###

message Metadata
{
 required fixed32 unknown1=1; // always 0x1234DAEB
 required fixed32 unknown2=2; // always 0x00010100
}

//###
// 2nd level: data container. Contains various types of data
//###

message DataContainer
{
 required SubDataContainer subDataContainer =1;
}

//###
// 3rd level: sub data container
//###

message SubDataContainer
{
 optional DeviceInfo deviceInfo =1; // Device info
 optional TrackRecord trackRecord =2; // activity tracking (calories, steps, hr,
sleep, etc)
 optional Record2 record2 =3; // ?
 optional Record6 record6 =5; // ?
 optional HeartRecord heartRecord =6; // Heart rate
 optional Record4 record4 =7; // ?
 optional FitnessRecord fitnessRecord =9; // TomTom FitnessPoints counters
}

//###
// 4th level: Device info
//###

message DeviceInfo
{
 required string deviceName =1;
 required fixed32 year =2;
 required SoftwareVersion softwareVersion =3;
}

message SoftwareVersion
{
 required int32 majorVersion =1;
 required int32 mediumVersion =2;
 required int32 minorVersion =3;
 required Unknown01 unknown01 =4;
 optional Unknown02 unknown02 =5; // 1.6.26
}

message Unknown01

Version 0.2

{
 optional int32 dummy =1;
}

message Unknown02
{
 optional int32 dummy =1;
}

//###
// 4th level: Tracker Record
//###
message TrackRecord
{
 required int32 recordId =1;
 required int32 time =2; // Epoch time in seconds, 900 s interval = 15
min
 required int32 timeZone =3; // Difference between time and UTC in seconds
(?)
 required int32 interval =4; // Interval of this measurement = 900s often
 required int32 steps =5; // steps
 required int32 active =6; // active time in seconds
 required int32 distance =7; // distance in m
 required int32 kcal =8; // kcal
 required int32 kcalRest =9; // kcal in rest? (~12 kcal/10 min)
 required int32 unknown1 =11; // 0
 optional int32 sleepTime =12; // sleep time in seconds.
 optional int32 sleepMode =13; // 1: active, 2: charging? 3: 1st hour sleep 4:
sleep
 // Total sleep time: sum sleep time if
sleepMode=3 or 4
 // from 12:00:00 till 12:00:00
}

//###
// 4th level: Data Record 2
//###

message Record2
{
 required fixed32 time =1; // Epoch time in seconds, 900 s interval = 15
min
 required int32 interval =2; // Interval in seconds? 14400=4h
 repeated TagValueContainer tagValue =3;
 required int32 unknown1 =4;
 required int32 unknown2 =5;
 optional int32 unknown3 =6;
 optional fixed32 unknown4 =104; // 1.6.26

}

message TagValueContainer
{
 required int32 tag =1;
 required ValueContainer valueContainer =2;
}

message ValueContainer
{
 required int32 value =3;
}

//###
// 4th level: Data Record 3 - heart rate
//###

message HeartRecord
{
 required fixed32 time =1; // Epoch time in seconds, 900 s interval = 15
min
 required int32 interval =2; // Interval in seconds?? 14400=4h
 required int32 heartRate =3; // Heartrate in bpm. This value is displayed by
TomTom MySports
 required int32 value01 =4; // Some other heartrate value
 required int32 value02 =5; // ?
}

//###
// 4th level: Data Record 4
//###

message Record4
{
 required fixed32 time =1; // Epoch time in seconds, 900 s interval = 15
min

Version 0.2

 required int32 interval =2; // Interval in seconds?? 14400=4h or
14280=3h58'???
 repeated int32 value =3; // 6 values in the message
}

//###
// 4th level: Data Record 5
//###

// Occurs every 120 seconds when logging activity

message UserData
{
 required string version =1;
 required int32 unknown1 =2;
 required int32 unknown2 =3;
 required int32 unknown3 =4;
 required int32 length =5; // Users heigth in cm
 required int32 weight =6; // User weight
 required int32 unknown4 =7;
 required int32 unknown5 =8;
 required int32 unknown6 =9;
 required int32 unknown7 =10;
 required int32 unknown8 =11;
 required int32 unknown9 =12;
 required int32 unknown10 =13;
 required int32 unknown13 =16;
 required int32 unknown14 =17;
 required int32 unknown15 =18;
 required int32 unknown16 =19;
}

message FitnessRecord
{
 required int32 time =2; // Epoch time in seconds, 120 s interval = 2
min during activity
 required int32 interval =3; // Interval in seconds?? 14280=238 min =
3h58'??
 optional UserData userData =5; // User data
 optional int32 unknown1 =7;
 optional int32 unknown2 =8;
 optional int32 unknown3 =10;
 optional int32 unknown4 =11;
 optional int32 unknown5 =12;
 required int32 fitnessPoints1 =15; // Cummulative TomTom activity points counter
 required int32 fitnessPoints2 =16; // Cummulative TomTom activity points counter

}

//###
// 4th level: Data Record 6
//###

message Record6Sub
{
 required int32 unknown1 =1;
 required int32 unknown2 =2;
 required int32 unknown3 =3;
}

message Record6
{
 required int32 time =1; // Epoch time in seconds, 900 s interval = 15
min
 required int32 interval =2; // Interval in seconds?? 14280=238 min =
3h58'??
 required int32 unknown1 =3;
 repeated Record6Sub sub =4; // Some data
}

//###
// Root message
//###

message Root
{
 repeated RootContainer rootContainer =1;
}

Version 0.2

ROUTEFILES (0X00B8NNNN)

Route files were added on the TomTom Adventurer for ahead track planning. The files are Google ‘Protocol
Buffers’ encoded. Protocol buffers (https://developers.google.com/protocol-buffers/: Protocol buffers are
Google's language-neutral, platform-neutral, extensible mechanism for serializing structured data – think XML,
but smaller, faster, and simpler). The file format is defined in a .proto file that can be compiled into
encoding/decoding code for various programming languages.

Below you find the .proto definition file for the route files.

//###
//
// Definition file for the TomTom routes (files with ID 0x00b8nnnn). A route is the result of
// trackplanning by converting and uploading GPX track files.
//
//###
syntax = "proto2";

<Language specific statements>

message MetaData
{
 required fixed32 unknown1 =1; // always 0x1234DAEB?
 required fixed32 unknown2 =2; // always 0x00010100?
}

// 1st level
message RootContainer
{
 optional MetaData metaData =7;
 optional TrackLevel1 level1 =8;
}

message LatLon
{
 required fixed32 value =1;
}

// Container
message Coordinate
{
 required LatLon lat =1;
 required LatLon lon =2;
}

// Coordinate container
message CoordinateData
{
 required Coordinate coordinate =1;
}

// Start coordinate
message StartCoordinate
{
 required Coordinate coordinate =1;
 required int32 index =2;
}

Version 0.2

// Route segment
message Segment
{
 required int32 numberOfCoordinates =1;
 repeated CoordinateData data =2;
}

// Segment section
message SegmentData
{
 required int32 numberOfSegments =1;
 repeated Segment data =2;
}

// Bounding box enclosing the route
message BoundingBox
{
 required LatLon latDown =1;
 required LatLon lonLeft =2;
 required LatLon latUp =3;
 required LatLon lonRight =4;
}

// Some information on the route
message TrackMetaData
{
 required string name =1;
 required BoundingBox box =2;
 required bytes time =3;
}

// 3rd level
message TrackLevel2
{
 required TrackMetaData metadata =1;
 repeated StartCoordinate coordinate =2;
 required SegmentData data =3;
}

// 2nd level
message TrackLevel1
{
 required TrackLevel2 level2 =1;
}

// The Root
message Root
{
 repeated RootContainer container =1;
}

The highest level is a .proto file is Root. It contains three levels of containers: RootContainer,
TrackLevel1 and TrackLevel2. At TrackLevel2 we find TrackMetadata (name, bounding box,
time), the StartCoordinate and the SegmentData. SegmentData contains one or more Segments,
each segment contains the Coordinates.

The total number of Coordinates in all Segments should not exceed 500. If a route to encode contains
more than 500 points, skip some intermediate coordinates.

Version 0.2

ACTIVITY TYPES

In several places a code is used to identify the activity. Next table shows the meaning:

Code Sport

0x00 Running

0x01 Cycling

0x02 Swimming

0x07 Treadmill

0x08 Freestyle

0x09 Gym

0x0a Hiking

0x0b Indoor cycling

0x0e Trail running

0x0f Skiing

0x10 Snowboarding

Version 0.2

USB INTERFACE

GENERIC MECHANISM

The communication to the watch at low level takes place by writing request packets to the write endpoint of
the USB device and reading response packets from the read end point.

Request packet (TX):

1 1 1 1 N, 0≤N≤252

0x09 N+2 Counter tx msg type Payload

Response packet (RX):

1 1 1 1 M, 0≤M≤252

0x01 M+2 Counter rx msg type Payload

Header (green)

1. Start of message
0x09 for TX, 0x01 for RX

2. Length of remaining part of the message
Including the remaining header bytes

3. Counter
Should be increased on each TX. RX reflects the value sent in the corresponding TX. Can be used to
check if the response belongs to the request.

4. Message type
Usually the msg type in the response is equal to the msg type in the request. The exception is the read
data request (MSG_READ_FILE_DATA_REQUEST)

Version 0.2

Device Vendor ID Product ID Read endpoint Write endpoint RX/TX Packet size

Multisports 0x1390 0x7474 0x84 0x05 64

Spark Music 0x1390 0x7475 0x81 0x02 256

Runner Music 0x1390 0x7475 0x81 0x02 256

Spark Cardio 0x1390 0x7475 0x81 0x02 256

Runner Cardio 0x1390 0x7477 0x81 0x02 256

Adventurer 0x1390 0x7477 0x81 0x02 256

 In case the packet size is 256 and N<252, the remainder of the packet can be set to 0.

Identified message types:

Message type (cmd) Description

0x02 MSG_OPEN_FILE_WRITE

0x03 MSG_DELETE_FILE

0x04 MSG_WRITE_FILE_DATA

0x05 MSG_GET_FILE_SIZE

0x06 MSG_OPEN_FILE_READ

0x07 MSG_READ_FILE_DATA_REQUEST

0x09 MSG_READ_FILE_DATA_RESPONSE

0x0A MSG_FIND_CLOSE

0x0C MSG_CLOSE_FILE

0x0D MSG_UNKNOWN_0D

0x0E MSG_FORMAT_WATCH

0x10 MSG_RESET_DEVICE

0x11 MSG_FIND_FIRST_FILE

0x12 MSG_FIND_NEXT_FILE

0x14 MSG_GET_CURRENT_TIME

0x1A MSG_UNKNOWN_1A

0x1D MSG_RESET_GPS_PROCESSOR

0x1F MSG_UNKNOWN_1F

0x20 MSG_GET_PRODUCT_ID

0x21 MSG_GET_FIRMWARE_VERSION

0x22 MSG_UNKNOWN_22

0x23 MSG_UNKNOWN_23

0x28 MSG_GET_BLE_VERSION

Version 0.2

HIGHER LEVEL FUNCTIONS

OPEN FILE/CLOSE FILE/DELETE FILE

TX:

1 1 1 1 4

0x01 6 cnt CMD File ID

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt CMD File ID Error

Variable Description

CMD Command byte (message type)

File ID ID of the file. Appears to be 0x00000000 on the adventurer

Error Error indication. 0 – no error, other value - error

Command (cmd) Description

0x02 MSG_OPEN_FILE_WRITE

0x03 MSG_DELETE_FILE

0x06 MSG_OPEN_FILE_READ

0x0C MSG_CLOSE_FILE

Version 0.2

READING FILES

1. Open file for reading (MSG_OPEN_FILE_READ)
2. Request file size (=bytes to be read; MSG_GET_FILE_SIZE)
3. Repeat: read file data chunk (MSG_READ_FILE_DATA_REQUEST)
4. Close file (MSG_CLOSE_FILE)

Reading file data: File is read in chunks. The amount of bytes to read is defined in the TX message

TX:

1 1 1 1 4 4

0x01 10 cnt 0x07 File ID Length

RX:

1 1 1 1 4 4 Read

0x01 Read+10 cnt 0x09 File ID Read File data

Variable Description

File ID File to read

Length Bytes to read from the opened file. For the Multisports it is max. 50, for Spark,
Runner, Adventurer it is max. 242 bytes.

Read Bytes read. Should be equal to Length

File Data Chuck of file data read.

Version 0.2

WRITING FILES

1. Open file for writing (MSG_OPEN_FILE_WRITE)
2. Repeat: Write file data chunk (MSG_WRITE_FILE_DATA)
3. Close file (MSG_CLOSE_FILE)

Writing file data in chunks:
File is written in chunks. Therefore the file data has to be split up in chunks. The number of chunks is
roundup(fileSize/maxChunkSize). The maxChunkSize depends on the watch type (see below).

TX:

1 1 1 1 4 Length

0x01 Length+6 cnt 0x04 File ID Chunk data

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt 0x04 File ID

Variable Description

File ID File to write

Length Bytes to write from the opened file. For the Multisports it is max. 54, for other Spark,
Runner, Adventurer it is max. 246 bytes.

Read Bytes read. Should be equal to Length

File Data Chuck of file data read.

Version 0.2

REQUEST FILE SIZE

This call returns the file size. On the Multisports model the file must be opened for reading first
(MSG_OPEN_FILE_READ).

TX:

1 1 1 1 4

0x01 6 cnt 0x05 File ID

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt 0x05 File ID Size Error

Variable Description

File ID ID of the file. Appears to be 0x00000000 on the Adventurer

Size File size in bytes

Error >0 when an error occurs: if the file does not exist or the file has not been opened for
reading (Multisport model only). 0 If no error occurred.

Version 0.2

LISTING/ENUMERATING FILES

This method can be used to enumerate files IDs and corresponding lengths.

1. List first file, resets the enumeration (MSG_FIND_FIRST_FILE)
2. Repeat: list subsequent files (MSG_FIND_NEXT_FILE)
3. Close find (MSG_FIND_CLOSE)

List first file:

TX:

1 1 1 1 4 4

0x01 10 cnt 0x11 0 0

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt 0x11 File ID Size End of list

List next file:

TX:

1 1 1 1

0x01 2 cnt 0x12

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt 0x12 File ID Size End of list

Variable Description

File ID ID of the file.

Size File size in bytes

End of list 0 if more files available, otherwise if not. If this value is unequal to 0, File ID and size
have no meaning.

Version 0.2

GET WATCH TIME

TX:

1 1 1 1

0x01 2 cnt 0x14

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt 0x14 Time

Variable Description

Time The current time in epoch seconds (UTC)

FIRMWARE VERSION (MSG_GET_FIRMWARE_VERSION)

TX:

1 1 1 1

0x01 2 cnt 0x21

RX:

1 1 1 1 length

0x01 2+length cnt 0x21 Version

Variable Description

Version The version as string of length bytes, like ‘1.7.53’

Version 0.2

BLUETOOTH LOW ENERGY VERSION (MSG_GET_BLE_VERSION)

TX:

1 1 1 1

0x01 2 cnt 0x28

RX:

1 1 1 1 4

0x01 6 cnt 0x28 Version

Variable Description

Version The version

PRODUCT ID (MSG_GET_PRODUCT_ID)

TX:

1 1 1 1

0x01 2 cnt 0x20

RX:

1 1 1 1 4

0x01 6 cnt 0x20 Product ID

Variable Description

Product ID Product ID, for Adventurer 0xe0070000.

RESET DEVICE (MSG_RESET_DEVICE)

TX:

1 1 1 1

0x01 2 cnt 0x10

The reset is used after uploading firmware files. The reboot installs the firmware. Since the watch resets, no
response (RX) is sent.

Version 0.2

RESET GPS PROCESSOR (MSG_RESET_GPS_PROCESSOR)

TX:

1 1 1 1

0x01 2 cnt 0x1D

RX:

1 1 1 1 length

0x01 2+length cnt 0x1D Reboot message

Variable Description

Reboot message A message as string of length bytes, like

‘wait 1 minute before disconnecting USB’

Version 0.2

FORMAT WATCH (MSG_FORMAT_WATCH)

This method formats the watch. After formatting, it is required to download and write the firmware as
described in ‘Firmware files (0x000000F0, 0x00000012, 0x00010200)’. Beware that the required preference file
is also deleted during the format, so download this file first before formatting the watch.

Disconnecting the watch after format and before writing the firmware results in the watch asking to be
reconnected again:

After the format and writing the firmware the watch can be registered again using TomTom Sports Connect.

TX:

1 1 1 1

0x01 2 cnt 0x0E

RX:

1 1 1 1 4 4 4 4 4

0x01 22 cnt 0x0E Error

Variable Description

Error 0 if no error, >0 if an error occurred

